A Denotational Engineering of Programming Languages

Part 10: Lingua-2V Program-construction rules for total correctness (Section 8.5 of the book)

Andrzej Jacek Blikle
May 31 ${ }^{\text {st }}, 2021$

The role of declarations

The derivation of a correct metaprogram

```
pre prc: dec; sin post poc
```

can be split into the derivation of two metaprograms:

pre prc and poc-dec:
pre prc and poc-dec:
skip-d; sin
skip-d; sin
post poc
post poc
pre can't include identifiers declared in dec

In the majority of program-construction rules we don't need to include declarations

```
poc-dec conjunction of
declaration-oriented
conditions:
ide is tex
ide is-type tex
ide proc-with ipd
ide fun-with fpd
```


Declaration-oriented conditions implicite in data-oriented conditions

```
pre prc:
    dec; skip-i
post poc-dec and prc
x is integer and x > 0 & x > 0
because
```

where > is a relations on integers

```
x > 0 m x is integer
but \equiv does not hold, e.g. if x is word
x is integer and x > 0 may be replaced by x > 0
in:
- pre- and post conditions,
- assertions.
```


The case of structured instructions

Rules concerning pre- and post conditions

Rule 8.5.2-1 Strengthening precondition
pre pre pin post poc
pre-1 \Rightarrow prc
pre prc-1 : sin post poc

Rule 8.5.2-2 Weakening postcondition
$\left\{\begin{array}{l}\text { pre prc : sin post poc } \\ \text { poc } \Rightarrow \text { poc-1 }\end{array}\right.$

Assignment

Rule 8.5.2-1 Assignment

```
pre ide:=dae @ con:
    ide := dae
post con
```

Proof follows directly from the semantics of algorithmic conditions.

Example

```
pre x:=y+1 @ 2*x > 10:
    x := y+1
post 2*x > 10
```

```
pre 2*(y+1) > 10:
    x:= y+1
post 2*x > 10
```

$x:=y+1 @ 2 * x>10 \Leftrightarrow 2 *(y+1)>10$
Here we have \equiv
but we only need \Leftrightarrow

Sequential composition

Rule 8.5.2-6 Sequential composition of a metaprogram with an instruction

```
(1) pre prc-1: sin-1 post poc-1
(2) pre pro-2: sin-2 post poc-2
(3) poc-1 \(\Rightarrow\) prc-2
```

Implication only top-down!
(4) pre prc-1: sin-1; sin-2 post poc-2
(5) pre prc-1: sin-1; asr poc-1 rsa; sin-2 post poc-2
(6) pre pro-1: sin-1; asr prc-2 rsa; sin-2 post poc-2
(1), (2) - constructions of programs
(3) - "usual" mathematical proof (by an authomatic prover)

- mathematically not very sophisticated
- but may include many variables

Conditional branching

Rule 8.5.2-2 Conditional branching if-then-else-fi

In Hoare's logic we can prove: pre $x \geq 0$:
if $1 / x>0$ then $x:=x$ else $x:=-x$
 post $\mathrm{x}>0$

While loop

Rule 8.5.2-8 Loop while-do-od

```
    pre inv and dae: sin post inv
    asr dae rsa ; sin limited-replicability in inv
    prc }=>\mathrm{ inv
    inv }=>\mathrm{ (dae or (not dae)) }->\mathrm{ absent in Hoare's logic
    inv and (not dae) }=>\mathrm{ poc
```

pre prc:
while dae do sin od
post poc

The application of this rule requires:

1. proving three metaimplications,
2. constructing a correct metaprogram; inventing an invariant
3. proving halting property; inventing a wellfounded set and a corresponding function

An example of a while-program derivation

```
pre m,n\geq0 and }x=n\mathrm{ and }k=1
    while x\not=0
    do
        k := k*m ;
        x := x-1 ;
    od ;
post k=m^n
```

Let inv be: $k=m^{\wedge}(n-x)$

- precondition prc
- data expression dae
— the beginning of \sin
- the end of sin
- postcondition poc

The values of n and m remain constant.
(1) pre $k=m^{\wedge}(n-x)$ and $x \neq 0: k:=k * m$; $x:=x-1$ post $k=m^{\wedge}(n-x)$
(2) asr $x \neq 0$ rsa; $k:=k * m$; $x:=x-1$ limited-replicability in $k=m^{\wedge}(n-x)$
(3) $n, m \geq 0$ and $x=n$ and $k=1 \Rightarrow k=m^{\wedge}(n-x)$
(4) $k=m^{\wedge}(n-x) \Rightarrow x=0$ or $x \neq 0$
(5) $k=m^{\wedge}(n-x)$ and $x=0 \quad \Rightarrow k=m^{\wedge} n$
well-founded set: (non-negative integers, >) K.sta = Sde.[x].sta

To derive our program we have to derive or prove, (1), and prove (2) - (5).

The case of imperative procedures

Procedures

Non-procedural case:
build a program
with expected properties

Given conditions (expectations):
pre, poc

Build a correct program (instruction):
pre prc: ins post poc
programming task

Procedural case:

$$
\text { build a } \frac{\text { declaration of a procedure }}{\text { such that }}
$$

the call of that procedure has expected properties

Given a procedure call (expectations): pre prc-call :
call DoIt(val acp-v ref acp-r)
post poc-call


```
pre prc-body:
    boody
post poc-body
```


A step-by-step construction

Given a metaprogram:

```
pre prc-call :
    call DoIt(val acp-v ref acp-r)
post poc-call
```

Build a declaration: ipd
proc DoIt(val fop-v ref fop-r) body
end proc
where:

```
pre prc-body:
    body
post poc-body
```

expectation
programming task

What should we assume about the future programming context of the call to make the call executable?
declaration-oriented condition

A step-by-step construction (cont.)

What should we assume about the properties of body

```
pre prc-body:
    body
post poc-body
```

to make the call correct?

```
prc-call }=>\mathrm{ prc-body[fop-v/acp-v, fop-r/acp-r]
poc-body }=>\mathrm{ poc-call[acp-r/fop-r]
```


Imperative procedures

Rule 8.5.3-1 Building a declaration of an imperative procedure

```
proc Dolt(val fop-v ref fop-r)
    body
end proc
```

(1) pre prc-bod: body post poc-bod
(2) prc-call \Rightarrow DoIt proc-with ipd
(3) pre-call \Rightarrow conformant (fop-v, fop-r, acp-v, acp-r)
(4) prc-call \Rightarrow prc-bod[fop-v/acp-v, fop-r/acp-r]
(5) poc-bod \Rightarrow poc-call[acp-r/fop-r]
(6) pre prc-call
call DoIt (val acp-v ref acp-r)
post poc-call

If DoIt is a recursive procedure then we can't prove (1) independently of (6)

Example of body derivation

GOAL: Derive a declaration of procedure Power such that:

```
pre Power proc-with ipd and a,b,c \geq 0:
```

call Power(val a, b ref $c)$
post $c=a^{\wedge} b . b$since a, b are value parameters, their values are not changed by the call

STARTING POINT (a proved program):

```
pre m,n\geq0 and }x=n\mathrm{ and }k=1
    while }x\not=0\mathrm{ do k:=k*m; x:=x-1 od
```

post $k=m^{\wedge} n$
EXPECTED HEADER OF PROCEDURE:
Power(val m,n nnint ref k nnint)

EXPECTED BODY PRECONDITION:

```
m,n,k is nnint
```

pre $m, n, k \geq 0$:
let x be nnint tel;
x:=n; k:=1;
post $m, n \geq 0$ and $x=n$ and $k=1$

Step-by-step construction

pre m,n\geq0 and }x=n\mathrm{ and k=1:
pre m,n\geq0 and }x=n\mathrm{ and k=1:
while $x \neq 0$ do $k:=k * m$; $x:=x-1$ od
post $k=m^{\wedge} n$
pre $m, n, k \geq 0$:
let x be nnint tel;
$x:=n$; $k:=1$;
while $x \neq 0$ do $k:=k * m ; x:=x-1$ od
check satisfaction
of (2) - (5)
proc Power(val m,n nnint ref k nnint)
let x be nnint tel;
$\mathrm{x}:=\mathrm{n}$; $\mathrm{k}:=1$;
while $x \neq 0$ do $k:=k * m ; ~ x:=x-1$ od
endproc

```
pre Power proc-with ipd and a,b,c \geq 0:
    call Power(val a,b ref c)
post c=a^b.
```


The case of recursion

Recursion - a new pattern of validation

NO RECURSION:

```
given (hypothesis)
pre prc-bod:
    body
post poc-bod
```

```
prove (conclusion)
```

prove (conclusion)
pre prc-call
pre prc-call
call DoIt (val acp-v ref acp-r)
call DoIt (val acp-v ref acp-r)
post poc-call

```
post poc-call
```

RECURSION:
Prove that both are correct!

```
pre prc-bod:
    body
    and
post poc-bod
```

```
pre prc-call
    call DoIt (val acp-v ref acp-r)
    post poc-call
```

In the case of recursion we can't avoid a correctness proof!

Simple nondetermnistic recursion

(a repetition)

If T is the least solution of $X=H X T \mid E$ then for any $A, B \subseteq S$

Rule 7.6.2-3

there exists a family of preconditions $\left\{\mathrm{A}_{\mathrm{i}} \mid \mathrm{i} \geq 0\right\}$ and a family of postconditions $\left\{B_{i} \mid i \geq 0\right\}$ such that $(\forall i \geq 0) A_{i} \subseteq\left(H^{\prime} E T\right) B_{i} \quad-i$ recursive calls
$A \subseteq U\left\{A_{i} \mid i \geq 0\right\}$
$(\forall i \geq 0) B_{i} \subseteq B$
$\subseteq \mathrm{RB}$

An example of a correctness proof for simple recursion

Goal: construct a procedure declaration of RecPow to make this call correct

```
pre RecPow proc-with ipd and a,b,c \geq 0:
    call RecPow(val a,b ref c)
post c=a^b
```

A candidate for declaration (ipd):

A mathematical task: prove the correctness of the call.

```
proc RecPow(val m,n nnint ref k nnint)
    let x be number tel;
    x:=n; k:=1;
    if }x\not=
        then x:=x-1 ; call RecPow(val m,x ref k); k:=k*m
        else skip-i
    fi
end-proc
```


An example (cont.)

An inductive version of the hypothesis; induction on N (a concrete number).

```
pre RecPow proc-with ipd and a,b,c \geq 0 and b=N:
    call RecPow(val a,b ref c)
post c=a^N
```

First step: $\mathrm{N}=0$ and formal parameters replaced by actual parameters

```
pre RecPow proc-with ipd and a,b,c \geq 0 and b=0:
    let }x\mathrm{ be nnint tel;
    x:=0; C:=1;
    if }x\not=
        then x:=x-1 ; call RecPow(val a,x ref c); c:=c*a
        else skip-i
```

 fi
 post RecPow proc-with ipd and $a, b, c \geq 0$ and $b=0$ and $c=a^{\wedge} b$

Equivalent to:
pre RecPow proc-with ipd and $\mathrm{a}, \mathrm{b}, \mathrm{c} \geq 0$ and $\mathrm{b}=0$:
let x be nnint tel;
$x:=0 ; c:=1$
post RecPow proc-with ipd and $a, b, c \geq 0$ and $b=0$ and $c=1$

An example (cont.)

Inductive step: let $\mathrm{b}=\mathrm{N}+1$ for $\mathrm{N} \geq 0$

```
pre RecPow proc-with ipd and a,b,c \geq 0 and b=N+1:
```

 let x be nnint tel;
 \(x:=N+1 ; c:=1\);
 if \(\mathrm{x} \neq 0\)
 then \(x:=x-1\);
 asr RecPow proc-with ipd and \(a, b, c \geq 0\) and \(x=N\) rsa;
 call RecPow (val a, \(N\) ref c);
 asr RecPow proc-with ipd and \(a, b, c \geq 0\) and \(b=N\) and \(c=a \wedge N\) rsa;
 c:=c*a;
 else skip-i
 inductive hypothesis
 fi
 post $c=a^{\wedge}(N+1)$

A research problem:
Formalize and prove correctness rules for recursive procedures.

The case of functional procedures

Functional procedures
 An example

```
fun RecPowerFun(m,n)
    let k is nnint tel
    call RecPower(val m,n ref k)
    return 3*k+1
endfun
```

Two forms of correctness statements:

```
pre RecPowerFun fun-with fpd and a,b \geq 0:
    RecPowerFun(a,b)
post-exp 3*(a^b)+1
    exported value as a function
    of actual parameters
pre RecPowerFun fun-with fpd and a,b \geq0:
    RecPowerFun(a,b)
post-yoke value > 1 }<\begin{array}{l}{\mathrm{ property of exported}}\\{\mathrm{ described by a yoke}}
```


Functional procedures

Formalization for arbitrary expressions

Properties of expressions described by expressions:

Generalization because fp call is an expression.

```
pre con
```

 dae means con \(\Rightarrow\) exp=p-exp
 post-exp p-dae

The evaluations of both expressions terminate cleanly
Clean termination of a data expression dae under condition con:

```
con }=>\mathrm{ exp=exp
```

Properties of expressions described by yokes:

```
pre con
    dae means con }=>\mathrm{ exp ם yok
post-yoke yok
```

exp \square yok
composite of the value of exp satisfies yok.

Functional procedures

New operator of conditions

```
[exp \(\square\) yok].sta \(=\)
    is-error.sta \(\quad \boldsymbol{\rightarrow}\) error.sta
Sde.[exp].sta \(=\) ? \(\boldsymbol{\rightarrow}\) ?
    let
        val = Sde.[exp].sta
    val:Error \(\quad \rightarrow\) val
    let
        (com, yok-v)= val
        \(y\)-val = Syoe.[yok].com
    true \(\quad \rightarrow \mathrm{y}\)-val
```

[exp \square yok].sta $=$
is-error.sta $\quad \boldsymbol{\rightarrow}$ error.sta
Sde.[exp].sta = ? $\boldsymbol{\rightarrow}$?
let
val = Sde.[exp].sta
val Error
\rightarrow val
let
(com, yok-v)= val
tue $\quad \rightarrow \mathrm{y}$-val
true

Composite of the value of exp
satisfies yok.

Invariants versus assertions

Invariant of an instruction (condition):
$\{c o n\} \bullet$ Sin. $[i n s] \subseteq\{c o n\}$
$\{c o n\} \subseteq$ Sin.[ins] • \{con\} total invariant

Invariant of a while-loop (condition):

```
prc => inv
    inv g (dae or (not dae))
    inv and (not dae) => poc
    pre inv and dae: sin post inv
    if dae then sin fi limited-replicability in inv
```

pre prc:
while dae do sin od
post poc

Assertion (instruction):
asr con rsa

